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a  b  s  t  r  a  c  t

Through  a careful  consideration  of  the  retention  ratio  for  field-flow  fractionation  (FFF),  we  show  that  a
single  unified  ideal  retention  theory  can  predict  a  wide  range  of  separation  behaviours  including  hydro-
dynamic  chromatography,  normal-mode  FFF  and steric-mode  FFF  by  introducing  the  concept  of  a device
retention  parameter.  We  determine  the  critical  device  retention  parameter  above  which  normal-mode
does  not  exist  and  there  is  no  clear  distinction  between  hydrodynamic  chromatography  and  steric-mode
FFF.  Numerical  analysis  of  the  elution  order  as  a  function  of  particle  size  quantitatively  predicts  the  tran-
sitions between  these  regimes.  The  resulting  map  of  the  operational-modes  shows  each  of  the  regions
icrofluidic separation
axén’s law
teric-mode FFF
ydrodynamic chromatography

and  their  connectivity,  and  so  may  guide  future  device  design.  By  extending  this  analysis  to  account
for  the  variation  of  stress  over  particle  surfaces,  a hitherto  unreported  regime  called  Faxén-mode  FFF  is
predicted,  which  has  the  same  elution  order  as  normal-mode  FFF.  This  mode  arises  when  particle  sizes
approach  the  channel  height,  as  can  occur  when  microfluidic  devices  are  utilized  for  FFF.  The  transition
from  steric-mode  to  Faxén-mode  FFF  is  numerically  mapped  and  approximations  for  each  transition  are

presented.

. Introduction

Field-flow fractionation (FFF) is an elegant separation technique
ased on a simple concept: separation of a mixture of different
pecies can occur when solute particles, carried through a channel
y a nonuniform, laminar flow profile, are acted on by an external
eld applied perpendicular to the flow. A schematic demonstrating
he principles of FFF is given in Fig. 1 for the case of a symmetric
arabolic flow profile. The perpendicular field pushes the ensemble
f solutes against the accumulation wall but diffusion disperses the
olute and resists the inhomogeneity. An exponential concentra-
ion distribution results in equilibrium. In particular, each species
f solute has a different concentration profile. Since solute parti-
les near the channel wall are subject to slower flowing solvent
han particles near the centre, samples with a mean height close
o the accumulation wall are carried along with a slower average
elocity than samples with a larger mean height.

The simplicity of FFF disguises the flexibility of the technique.
FF has been used to separate particles as small as 1 nm [1–4]
nd as large as 100 �m [5,6]. It has been used to size separate
verything from colloids [7–10] to macromolecules [11–15] to cells

16–19]. It can do this because of the wide variety of fields that can
e used. Sedimentation, cross flows (both symmetrical and asym-
etrical), and thermal fields are most commonly used. However,
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electrical, pressure, magnetic, dielectrophoretic, acoustic, pho-
tophoretic have all been demonstrated as acceptable physical fields
[20,21]. The miniaturization of FFF techniques for wide-spread
use in microfluidic devices appears tenable. Electrical- [22,23],
dielectrophoretic- [24,25],  and thermal- [26,27] FFF appear particu-
larly amenable to micro- and nanofluidic devices [28,29]. However,
miniaturization must be approached with caution. Effects due to
miniaturization can be subtle and easily overlooked. The conse-
quences of using microfluidic channels as FFF devices have been
discussed in the literature [30–32].  Initial discussions centred on
the role of channel dimensions in FFF [30]. In ideal situations,
efficiency and speed are independent of channel height while selec-
tivity is reduced with decreased channel height. At that time, there
seemed to be a consensus that there was  no immediate advantage
to decreasing channel size.

More recently, it was  pointed out that a subset of FFF techniques
does in fact benefit from miniaturization. In particular, the resolu-
tion of electrical-FFF is increased as channel height is decreased,
allowing for shorter analysis times in microchannels [31]. Improve-
ments to both the resolution and the separation efficiency have
been quantitatively demonstrated [32]. It is now recognized that in
practice miniaturization entails both a decrease in channel height
and also length which results in less peak spreading [32].

Experimentalists seeking to reap the benefits of using microflu-
idic channels in FFF apparatuses must recognize that, depending

on sample and chosen channel height, the size of solute particles
may  vary from relatively small to large and confined. Although this
does not necessarily preclude analytical interpretation of resulting
chromatograms, it does require a unified retention theory that can

ghts reserved.
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Fig. 1. Schematic of normal-mode FFF. An external force, perpendicular to the flow
profile pushes the solute against the accumulation plate. The competition between
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Table 1
External forces f and corresponding scaling exponents  ̨ and device retention param-
eters � for examples of common FFF techniques. Variable names are the same as
used by Cölfen and Antonietti in Table 1 of Ref. [20] with the notable exceptions that
here the particle size is r, the centrifugal acceleration is G and the Stokes–Einstein
equation D = kBT/6��r  has been used, where � is the solvent viscosity.

FFF-method f  ̨ �

Sedimentation 4�
3 G��r3 3 3

4�
kBT

G��w4

Flow 6�� wV̇c
V0

r 1 kBT

6��w3
V0
V̇c

Thermal 6�� DT �T
w r 1 kBT

6�w�DT �T
he  force and the diffusivity establishes a concentration gradient. The mean velocity
f  the solute 〈V〉 is a function of the solute concentration c(ỹ) and solvent velocity
rofiles v(ỹ).

redict the fractionation for samples of everything from the tiniest
racer particles eluting in the hydrodynamic chromatograghy limit
f FFF to the largest beads that fit snugly in the channel. In prac-
ice, a microscopic system size is needed for these two limits to be
chieved in a single device.

In this paper, we take a simplistic view of the FFF process. We
o not explicitly account for the fact that we are concerned with
icro- and nanoscopic channel heights. Rather, we  extend the tra-

itional theory of Giddings [5,33,34] into operation regimes that
t one time were quixotic but in today’s age of microfluidics and
anotechnology are within reach. The theory is ideal in the sense
hat the flow field is assumed to be slow and unperturbed, and
articles’ interactions with the wall are assumed to be solely steric,
ithout frictional or hydrodynamic interactions. Similarly, compli-

ating effects such as particle slip, nonparabolic solvent flow and
ttraction to the accumulation wall are intently ignored [35].

. Background

.1. Normal-mode FFF

Consider a cross-sectional area with a solvent flow velocity field
parallel to the plates and solute concentration profile c. The cross-
ectional average velocity of solute through a plane is

V〉 = 〈cv〉
〈c〉 (1)

here 〈 · 〉 denotes cross-sectional average over the channel height.
ne should compare 〈V〉 to the average velocity of the solute car-

ier fluid, 〈v〉. The retention ratio R is defined as the ratio of these
wo mean velocities. Since both elute through the same length of
hannel, the ratio of the time it takes the solute to elute (called the
etention time) and the time it takes the solvent to elute (called the
oid time) is equivalent to the ratio of mean velocities as

 = t0

tR
= 〈V〉

〈v〉 = 〈cv〉
〈c〉〈v〉 .  (2)

If no-slip at each wall is assumed and any distortion due to the
erpendicular field is neglected, (e.g. thermal-FFF tends to skew the
elocity profile [36,37,20]),  the velocity of the fluid as a function of
he distance from the accumulation wall normalized by the channel
eight ỹ = y/w (hereafter ·̃ denotes scaling by channel height, w)

s given by the Poiseuille equation(
2
)

(ỹ) = 6〈v〉 ỹ − ỹ . (3)

Any perpendicular external force f can be used to create a
onuniform concentration distribution but we assume the concen-
ration profile is independent of the mean flow velocity 〈v〉 [38].
Magnetic 4�
3 ��mHm�Hmr3 3 3

4�
kBT

w4��mHm�Hm

Electrical 6���eEr 1 kBT
6���eEw

Point-particles in a solution with thermal energy of kBT have a
concentration profile with the form

c (ỹ) = c0 exp
(

− fy

kBT

)
= c0 exp

(
− ỹ

	

)
(4)

where c0 is the concentration of solute at the accumulation wall,
ỹ = 0. The retention parameter 	 is strictly defined as the ratio
between the thermal and potential energy scales

	 ≡ kBT

fw
.  (5)

For point-particles, the mean concentration height thus has the
form

〈ỹ〉 = 〈ỹc〉
〈c〉 = 	 + 1

1 − e1/	
. (6a)

In the strong force limit, 	 becomes small and

〈ỹ〉 � 	 − e−1/	 � 	. (6b)

In this limit, we can interpret 	 as the dimensionless length scale
of the concentration distribution. In the negligible force limit, 	 is
large and expanding the exponential in Eq. (6a) to third order leads
to

〈ỹ〉 � 1
2

[
1 − 1

6	
+ 1

360	3
+ . . .

]
� 1

2
(6c)

as we  would expect for a uniform concentration.
In much the same way as was done for 〈ỹ〉, an analytical expres-

sion for the retention ratio can be found by evaluating the averages
in Eq. (2) for Eqs. (3) and (4).  The resulting retention ratio is inde-
pendent of flow rate:

R (	) = 6	L
(

1
2	

)
(7)

where L (x) = coth (x) − 1/x is the Langevin function. Eq. (7) has
been shown to be very versatile for parameterizing retention
[20,21] and characterizes what has been called normal-mode FFF.

Although the theory presented so far has treated the solute as
an ensemble of point-particles, there is an implicit size depen-
dence through 	. For instance, in sedimentation-FFF it is generally
appropriate to assume a constant solute mass density such that the
gravitational force f goes as the volume r3 of the spherical particle
or 	 ∼ 1/f ∼ r−3. To consider this in a general manner, let the force
scale as the particle radius r to some power  ̨ such that the retention
parameter can be rewritten

	 = kBT

�r˛w
= kBT

�r̃˛w1+˛
= �r̃−˛, (8)

where we  have extracted the normalized size dependence r̃˛ from

both the force (f ≡ �r˛) and the retention parameter 	. The resulting
dimensionless number, �,  characterizes the FFF apparatus itself
(for this reason it is called the device retention parameter)  and is
given for a few examples in Table 1.
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Fig. 2. Retention ratio R (r̃) as predicted by the standard point-particle theory for
normal-mode FFF. The retention parameter 	 is assumed to vary like 	 = �r̃−˛ but
the particle size is otherwise not taken into account. Solid lines denote  ̨ = 3, dashed
˛  = 2, dash-dot  ̨ = 1 and dotted lines denote  ̨ = 0 (all of which are horizontal). Small
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Fig. 4. Retention ratios for a variety of retention parameters varying from small
articles elute first except when  ̨ = 0 where retention time is not a function of
article size.

Fig. 2 demonstrates that the point-particle theory of normal-
ode FFF then predicts that small particles elute before large

articles do. The monotonic decrease in elution time with parti-
le size remains true for all device retention parameters � and all
-scaling. The magnitude of the slope increases as � is reduced,
hich is indicative of why the resolution increases with external

orce.

.2. Steric-mode FFF

The steric interaction of finite-size solutes with the accumu-
ation wall creates an excluded region as schematically shown in
ig. 3. To include the effects of steric repulsion from the wall, the
ntegration limits on the profiles used to determine the retention
atio are altered. Steric effects are handled by stating that c(ỹ) is
he concentration profile of the centre of masses of the spherical
articles of scaled radius r̃  = r/w. The flow field is still assumed
o be slow (low particle Reynolds number and insignificant iner-
ial contributions) [39,40] and unperturbed by the presence of the
olute (infinitely wide channels and dilute solutions) [41,42].  The
ariable c0 is redefined as the concentration at the lowest point, i.e.

 distance r̃ from the accumulation wall, so that the concentration
rofile becomes
(ỹ) =
{

c0e−(ỹ−r̃)/	 for r̃ < ỹ < 1 − r̃
0 otherwise

(9)

Accessible Accessibl e

r
Flow Profile

w

ig. 3. Schematic representation of steric-mode FFF. When hard, finite-sized solutes
ndergo elution, they are excluded from a region near the wall where the fluid
elocity is low. As a result, they tend to elute earlier than smaller particles.
forces of 	 = 100 to large forces of 	 = 0.002. Solid lines denote Eq. (11) and closed
circles on the R-axis represent the values predicted by Eq. (7). The inset shows that
the  mean concentration height 〈ỹ〉 grows with particle size r̃ when 	 � 1.

where 	 = 	 (r̃) unless  ̨ = 0. The concentration distribution con-
trols the mean height

〈ỹ〉 = 	 + 1
1 − e(1−2r̃)/	

+ r̃ coth
(

1 − 2r̃

2	

)
. (10a)

The two  limits are now given by

〈ỹ〉 �

⎧⎨
⎩

r̃ + 	 − e−(1−2r̃)/	 	 � 1(b)
1
2

[
1 − (1 − 2r̃)2

6	
+ (1 − 2r̃)4

360	3
+ · · ·

]
� 1

2
	  	 1(c).

(10)

We  first note that Eq. (10c) agrees with Eq. (6c) when r̃ → 0, as
it should. For strong forces (the small 	 case of Eq. (10b)), solute
particles are pushed right against the wall and so the mean con-
centration height is expected to grow linearly with the particle size
r̃. This linear relationship is quite evident in mean concentration
height for fixed, small values of 	 as seen in Eq. (10b) or the inset
to Fig. 4. For larger values of 	 (weak forces) the solute particles are
able to diffuse further from the accumulation wall and the nonlinear
terms in Eq. (10a) become apparent in the inset.

As a result of shifting the mean particle height 〈ỹ〉 towards the
centre of the channel by increasing particle size, the mechanism
for separation changes to that of steric-mode FFF and the retention
ratio becomes

R (r̃,  	) = 6	 [1 − 2r̃]L
(

1 − 2r̃

2	

)
+ Fp, (11)

which is strikingly similar to Eq. (7) for normal-mode FFF. The frac-
tion of the channel accessible to the particle, 1 − 2r̃, appears in
Eq. (11) while in Eq. (7) it is identically unity. Beyond this effec-
tive reduction of channel height, steric effects lead to additional
changes to the behaviour of the retention ratio. For convenience
of comparison, these effects have been encapsulated into the new
term

Fp (r̃) = 6r̃ (1 − r̃) . (12)

This result is in agreement with the commonly accepted form
[5,34,43]. As seen in Fig. 4, Eq. (7) is the r̃ → 0 limit and so gives
the points on the R-intercept of Eq. (11).

Each line in Fig. 4 corresponds to a different 	, held fixed regard-
less of particle size in spite of the fact that 	 = 	 (r̃) (the explicit size

dependence of 	 will be treated in Section 3.1). Even when 	 has no
size-dependence, Eq. (11) demonstrates that particles of different
sizes can in fact be separated. Historically [34], 	 is kept fixed and
only the explicit size effects in Eq. (11) are included as is done in
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Fig. 5. Retention ratios for  ̨ = 1. When the force varies as r̃˛ ,  the retention ratio is no
longer a simple monotonic rise as it was in Fig. 4 for  ̨ = 0. Below the critical device
retention parameter �c = 1.90 × 10−2, the retention ratio becomes nonmonotonic.
The  insert shows that as � decreases, the mean concentration height’s minimum
T.N. Shendruk, G.W. Slater / J. C

ig. 4. The present size dependence of Eq. (11) has an interesting
onsequence for the zero force limit of 	→ ∞.

.3. Hydrodynamic chromatography limit

Even in the absence of a field, steric interactions lead to some
ractionation as seen by the large 	 curves in Fig. 4. The 	 	 1
imit represents vanishingly small forces and corresponds to the
ydrodynamic chromatography [44] limit of FFF [5,20] in which the
teric-mode of separation results in retention even when the field
s zero.

Since there is no force towards the accumulation wall, the par-
icles have a uniform concentration distribution across the channel
ith a mean height of 〈ỹ〉 = 1/2. Hydrodynamic chromatography

eparates particles by excluding them from regions of slow mov-
ng solvent near the wall. For a fixed force (fixed 	), this leads
o an elution time that decreases with increasing particle size—as
pposed to normal-mode FFF as seen in Fig. 2. In Fig. 4, cases of

 ≥ 1 approximate well the hydrodynamic chromatography limit
Eq. (13c)).

The hydrodynamic chromatography limit is only one of four
pecific limits of Eq. (11):

 �

⎧⎪⎪⎨
⎪⎪⎩

6	L
(

1
2	

)
r̃→ 0 (a)

Fp + (1 − 2r̃)2 r̃→ 1/2 (b)
Fp + (1 − 2r̃)2 	 	 1 (c)
Fp + 6	 (1 − 2r̃) − 12	2 	 � 1(d).

(13)

nterestingly, the hydrodynamic chromatography result 	 	 1 (Eq.
13c)) also appears when r̃ → 1/2 (Eq. (13b)) reflecting the fact that
s the particle size approaches the channel height steric effects will
lways dominate over the external field (we will return to this limit
n Section 3.4). In the limit r̃ → 0, Eq. (11) reduces to Eq. (13a),

hich is identical to the point-particle prediction of Eq. (7).  Each of
hese limits is marked in Fig. 4. The point-particle limit agrees with
he R-intercept and is marked by closed circles while the limits for
ydrodynamic chromatography and strong forces are written in.

. Regimes and transitions

.1. Transition between normal- and steric-modes

Section 2.2 reviewed the variation of the retention ratio R in
 microfluidic channel as a function of particles size r̃ for a fixed
etention parameter 	, which is equivalent to a fixed force f regard-
ess of size. This is the manner in which the situation is generally
ramed in the literature [34]. However, as was broached at the end
f Section 2.1, it is generally more reasonable to allow the force to
hange with particle size. We  now incorporate both steric effects
nd size dependent forces into a unified description by substituting

 = �r̃−˛ (Eq. (8)) into the results of Section 2.2.  This produces the
oncentration profile and the retention ratio explicitly in terms of
article size r̃:

(ỹ) =
{

c0e−r̃˛(ỹ−r̃)/� for r̃ < ỹ < 1 − r̃
0 otherwise,

(14)

(r̃, �) = 6�

r̃˛ [1 − 2r̃]L
(

[1 − 2r̃] r̃˛

2�

)
+ Fp (r̃) , (15)

hile the steric function Fp remains unchanged from Eq. (12). In
hese terms, ˛ = 0 represents a hypothetical force that is not a func-
ion of particle size (as was used in Fig. 4). Fig. 5 shows the retention

atios for a range of � when  ̨ = 1 which is the appropriate scaling
or many examples of FFF techniques, as seen in Table 1.

Consider first the extreme particle sizes in Fig. 5. The smallest
article sizes all have a retention ratio approaching R → 1 regardless
occurs at smaller and smaller particle sizes.

of � because Brownian motion dominates the applied force. Small
r̃ solutes constitute tracer particles which are able to diffuse across
the entire channel and sample the entire solvent velocity profile,
resulting in 〈ỹ〉 = 1/2 and R = 1 for all �.  Next, consider the largest
particle sizes. The inset shows that once again the mean height
has become 〈ỹ〉 = 1/2 for all � but now the R /= 1. This is because
the largest particles fit snugly into the channel causing the con-
centration distribution to be sharply distributed about ỹ  = 1/2.
The solvent velocity at the centre point is v

(
1/2

)
= 3〈v〉/2, which

causes the retention ratio to approach R = 3/2 as seen in Fig. 5. How-
ever, R → 3/2 is physically nonsensical since the speed of such large
particles is not well represented by the solvent’s velocity in the
absence of the particle and so we  shall return to this result (see
Section 3.4).

Having discussed the extreme points of Fig. 5, we now turn to
intermediate values. The most immediately striking property of
Fig. 5 is that R is not necessarily a monotonic function of particle
size. For large values of �,  the retention ratio remains monotonic (a
perturbation about the hydrodynamic chromatography limit) but
when � decreases below some critical value �c the retention ratio
R becomes nonmonotonic with a minimum at some particle size
r̃NS (�). Above r̃NS, the retention ratio in Fig. 5 grows in a sim-
ilar manner as it did in Fig. 4. However, the behaviour of R (r̃) for
small particle sizes in the regime r̃  < r̃NS is much different. At small
sizes, as the particle size increases, the retention ratio falls drasti-
cally. This is the same behaviour as in Fig. 2 and it is caused by
the same mechanisms: As always, the concentration distribution
results from the competition between the external field, thermal
energy and the hard steric interaction with the wall but at these
sizes particles are too small for steric effects to dominate. Instead,
in this range the behaviour is the same as that predicted by normal-
mode FFF and shown in Fig. 2.

All these properties of R are reflected in the mean concentration
height 〈ỹ (r̃)〉. The inset of Fig. 5 shows that 〈ỹ (r̃)〉 is nonmonotonic
with a global minimum for all values of �.  When � is small, the
vast majority of particle sizes are above this minimum, and above
the minimum the average concentration height increases fairly lin-
early, 〈ỹ (r̃)〉 � r̃.  Indeed, in this strong field limit, the external force
completely dominates over thermal motion and solute particles are
pinned to the accumulation wall. The hard steric repulsion ensures

that the mean height of the concentration profile grows linearly
with r̃ as it did in Fig. 4. The distribution of particle sizes below
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Fig. 6. A tentative operational-mode diagram for FFF (see Figs. 8 and 11). The
dividing line between normal-mode FFF and large particle steric-mode FFF is the
numerically determined r̃NS. Normal-mode FFF is represented by the shaded regions
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Fig. 7. Retention ratios for  ̨ = 2. The retention ratio is monotonic above the critical
device retention parameter �c = 3.16 × 10−3. As discussed in the text, we have three
modes of operation when � < �c: For the smallest particles the force is negligible,
the  slope is positive and the mode of operation is hydrodynamic chromatography.
For moderately small particles the force dominates, the slope is negative and the
mode of operation is normal-mode FFF. For the largest particles the effects of steri-
cally excluded regions are most important, the slope is once again positive and the

radii as large as 17% the channel height.

Fig. 8. Enclosed regions are the areas of normal-mode FFF in which smaller particles
elute before larger particles. Outer areas are steric-mode and hydrodynamic chro-
nd  does not exist above a critical device retention parameter �c . The critical device
etention parameter values (�c = 1.90 × 10−2 for  ̨ = 1; �c = 3.16 × 10−3 for  ̨ = 2; and

c = 8.07 × 10−4 for  ̨ = 3) are marked by a closed circle.

he minimum results not from the steric exclusion but from the
ompetition between the force and the thermal noise.

It is this difference in mechanisms that suggests the importance
f r̃NS. It is a very generally stated rule in the field of FFF that smaller
articles elute before larger particles in normal-mode FFF. On the
ther hand, in steric-mode FFF larger particles elute before smaller
articles [20]. Both modes of operation are considered monotonic
nd from the definition of R ∝ t−1

R in Eq. (2),  this rule means that
he slope ∂R/∂r̃ is negative for normal- and positive for steric-mode
FF.

However, it had been intuitively obvious that there must be a
ransition between the two modes of operation described by Eq.
7) and Eq. (11) (sometimes called the steric-inversion point). Even
efore we allowed 	 ∝ r̃−˛, we saw that Eq. (11) approaches Eq.
7) in the limit r̃ → 0. However, by extracting r̃−˛ from 	, we can
uantitatively predict r̃NS (�), which is in fact the particle size for
hich this transition occurs as a function of �,  by numerically find-

ng the minima in Fig. 5 (the roots of ∂R/∂r̃). The subscript NS was
hosen in retrospect to signify that r̃NS represents the normal-to-
teric transition. The transition size is traced in Fig. 6, creating an
perational-mode diagram for  ̨ = [1, 2, 3].

A transition from normal- to steric-mode FFF exists only below
 critical �c. Fig. 6 marks these and the caption lists the numeric
alues. Above �c there simply is no normal-mode and the retention
atios shown in Fig. 5 monotonically increase with particle size. This
ill be discussed further in Section 3.2.

.2. Hydrodynamic chromatography-mode FFF

Section 3.1 used the  ̨ = 1 case to show that the unified ideal
etention theory Eq. (15) can map  out the transition between
ormal- and steric-mode FFF (Fig. 6). However, a careful investi-
ation of Fig. 5 for very small r̃  values when � is near �c, (e.g. see
he � = 0.01 curve) reveals that there is a small region starting at

 = 0 within which larger particles elute before smaller particles.
o investigate this further, consider R for the same set of � but with

 = 2 as shown in Fig. 7.
The transition between normal- and steric-modes (at r̃ = r̃NS)

emains; however, a local maximum at r̃  = r̃HN (with r̃HN < r̃NS)

s clearly evident. Since ∂R/∂r̃ is positive in the region r̃ < r̃HN,
he mode of operation has the same elution order as steric-

ode FFF. However, since the thermal forces dominate over
he external field in this region, this is actually a small-particle
mode of operation is steric-mode FFF.

hydrodynamic chromatography regime (hence the subscript
HN for the transition between hydrodynamic chromatography
and normal-mode FFF).

Normal-mode operation only exists over a range of particle
sizes above which steric effects dominate because of the large size
of the particle and below which the external force is insignifi-
cant due to the particle’s small size. This can be seen explicitly in
Fig. 8. The normal-mode of operation exists as a lobe when � < �c.
Above �c, this new small particle hydrodynamic chromatogra-
phy regime seamlessly transitions directly to steric-mode FFF but
below �c, normal-mode FFF exists between the hydrodynamic
chromatography- and steric-mode FFF.

A surprising result of Fig. 8 is just how far normal-mode oper-
ation can extend along r̃ when the force is a strong function of the
particle size. When  ̨ = 3, normal-mode can be achieved for particle
matography limit regions of operation in which larger particles elute before smaller
particles. Solid lines are the numerically determined roots of ∂R/∂r̃ (r̃HN is a local
maximum of R and so forms the left border while r̃NS is a local minimum and forms
the right boarder).
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.3. Limits

Once again it is valuable to consider the limits of the retention
atio. From Eq. (15) we obtain

 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Fp + (1 − 2r̃)2 r̃→ 0 (a)
Fp + (1 − 2r̃)2 r̃→ 1/2 (b)
Fp + (1 − 2r̃)2 � 	 1 (c)

Fp + 6�

r̃˛ (1 − 2r̃) − 12�2

r̃2˛
� � 1. (d)

(16)

he hydrodynamic chromatography-mode at the smallest parti-
le sizes that was discussed in Section 3.2 is quadratic in r̃ and is
escribed by Eq. (16a) which is the same limiting behaviour as at

arge particle sizes (Eq. (16b)) and at large device retention param-
ters � (Eq. (16c)). This is fundamentally different from Eq. (11)
n that Eq. (7) can no longer be the point-particle limit since it is
mpossible to have both extremely small particles and extremely
arge forces. However, there is no need to assume small particle
izes for the hydrodynamic chromatography. The large � 	 1 limit
f Eq. (16c) is the general hydrodynamic chromatography limit and
ts form agrees with microfluidic separation studies of hydrody-
amic chromatography [45].

The three limits Eqs. (16b)–(16d)  are unchanged from the forms
n Eq. (13). This has the interesting consequence of making three
ut of four limits have the form R � Fp + (1 − 2r̃)2 = 1 + 2r̃ − 2r̃2

hich is clear in Fig. 7. The r̃ → 0 and r̃ → 1/2 limits both fall on
he hydrodynamic chromatograghy limit of � 	 1. The anomalous
imit is � � 1. In fact, inspecting either Fig. 5 or Fig. 7 reveals that
his limit itself has two limits.

 When the particle radius is large, the first term in Eq. (16d) is most
important such that R ≈ Fp = 6r̃ (1 − r̃). Even at the smallest �,
as the particle size becomes large all the retention ratios grow
in the same manner. The behaviour may  seem fairly universal at
this point in the discussion but this limit will be improved upon
in Section 3.4.

 When the particle radius is small but the field is extremely strong,
(i.e. � � r̃˛ or equivalently 	 � 1), then the second term in Eq.
(16d) dominates meaning that R ≈ 6� (1 − r̃) /r̃˛ ≈ 6	 and the
strong force limit from point-particle theory (which is often con-
sidered a reasonable approximation [21]) is recovered.

.4. Faxén-mode FFF

The finite size of the particles has been included as a steric exclu-
ion from the wall but it has a secondary effect as well. Until now,
e have considered the velocity of particles whose centres of mass

re at some height ỹ to have velocity V (ỹ) = v (ỹ) given by Eq. (3).
owever, this is not strictly true because the velocity profile is
arabolic and so not symmetric about the centre of mass except
t ỹ = 1/2 [39,46].

The nonphysical consequences are most striking at large parti-
le sizes. As the particle diameter approaches the channel height
n Figs. 4, 5 and 7, steric exclusion dominates such that the centre
f mass is relegated to the centre of the channel ỹ = 1/2 and c (ỹ)
pproaches a Delta-function regardless of the strength of the per-
endicular force. The erroneous assumption that even in this limit
q. (1) does an adequate job approximating particle velocity means
hat by Eq. (2) the retention ratio becomes

1/2 = limr̃→1/2R = limr̃→1/2〈V〉 =
v
(

ỹ → 1/2
)

= 3
. (17)
〈v〉 〈v〉 2

ndicating that the elution time of the largest particles will be sig-
ificantly shorter than the void time. Intuitively we  expect particles
hat see the entire flow profile to move with the same average
Fig. 9. Schematic of area cross sectional integration of the particle’s velocity.

velocity as the solvent, i.e. R1/2 = 1. Although it is true that steric
effects do dictate the retention ratio regardless of � in the large par-
ticle limit, continuing to estimate limr̃→1/2〈V〉 by it’s point-particle

value v
(

ỹ → 1/2
)

becomes increasingly inaccurate. Let us improve
upon this assumption.

At large sizes a significant portion of the particle’s surface sees
a much different velocity than v (ỹ). Rather than using Eq. (1),  a
particle’s velocity at a position ỹ is better estimated by

〈V〉 ∼= 〈Vc〉
〈c〉 (18)

where the velocity of the large spherical particles in the presence
of the confining walls is no longer estimated by the fluid speed at
that point, V (ỹ) /=  v (ỹ). In order to correct for the containing walls,
the stress on the sphere must be integrated over it’s surface area as
schematically shown in Fig. 9. This results in Faxén’s Law and gives
the velocity of the particle in steady-state to be

V (ỹ) =
(

1 + r̃2

6
∇2

)
v (ỹ) . (19)

With this alteration, we can use Eq. (2),  Eq. (3),  Eq. (9) and Eq. (19)
to recalculate the unified ideal retention ratio as

R (r̃,  �) = 1
〈v〉

∫ w

0

cVdy

∫ w

0

cdy

= 6�

r̃˛ [1 − 2r̃]L
(

[1 − 2r̃] r̃˛

2�

)
+ Ff (r̃) ,

(20)

which is identical to Eq. (15) but with a steric function Ff that is
appropriate for finite sized particles. This new steric function Ff

differs trivially from Fp (given by Eq. (12)) and is

Ff (r̃) = 6r̃
(

1 − 4
3

r̃
)

. (21)

Since the form of Eq. (20) is the same as Eq. (15), even the limits
on the retention ratio given by Eq. (16) remain robust by simply
replacing the steric term Fp with Ff .

The tiny change from Fp to Ff is able to pull the retention ratio
for large particles down from R1/2 = 3/2 to R1/2 = 1 as seen in Fig. 10
and as is more physically intuitive. Since this region of ∂R/∂r̃ < 0
exists for all � and in an ideal theory such as this one the retention
ratio must go down to unity, there must always exist a region in
the steric-mode regime where R > 1.

Fig. 11 traces out the borders between operational-modes. The
enclosed, shaded regions represent the normal-mode elution order
(smaller particles eluting first) while the unshaded, outer regions

operate in the steric-mode elution order (larger particles eluting
first). An entirely new region at large r̃  > r̃SF with normal-mode
elution order exists. We  call this the Faxén-mode FFF regime and so
label the transition from steric- to Faxén-mode with the subscript
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Fig. 10. The retention ratio for  ̨ = 1 taking into account both steric effects and uti-
lizing Faxén’s Law as compared to simply assuming the centre of mass velocity as
done  previously. Dashed lines correspond to Eq. (15) while solid lines are from Eq.
(20)  and Eq. (21).
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ig. 11. Ideal FFF-modes map. The numerically determined roots of ∂R/∂r̃ give the
ransitions between the four different modes of operation, r̃HN, r̃NS and r̃SF.

F. Faxén-mode FFF exists for all �.  At the largest values of �, r̃SF →
.25 meaning that the transition occurs when the particle radius

s a quarter of the channel height. At smaller �,  the concentration
s biased towards the accumulation wall and the transition doesn’t
ccur until r̃SF = 0.375.

For  ̨ = 1, 2 the normal-mode and Faxén-mode form discon-
ected regions while the hydrodynamic chromatography-mode
nd the steric-mode are a connected space. On the other hand,
hen ˛ = 3 the border between the normal- and steric-modes (r̃NS)

xtends to such large particle sizes that it passes r̃SF and so normal-
ode interconnects with the Faxén-mode regime. In this case, it is

he hydrodynamic chromatography-mode regime of FFF and steric-
ode FFF that are disconnected regions.

. Conclusions

The equations governing the FFF elution time of hard spher-
cal particles in low Reynolds number flow are well known. Eq.
7) is often used for normal-mode FFF while Eq. (11) is used for

teric-mode FFF. By explicitly including the external force’s depen-
ence on particle size, we are able to quantitatively predict the
ransition between these two modes of operation. There exists a
ritical device retention parameter, �c, below which the transition
atogr. A 1233 (2012) 100– 108

between normal- and steric-mode exists but above which normal-
mode operation is not possible.

Furthermore, we find that a mode of operation exists at the
smallest particle sizes with the same elution order as steric-mode
FFF. The force pushing the particles towards the accumulation wall
is size dependent and is insignificant compared to the steric force
in this size regime. We  quantitatively trace the transition between
this small-particle hydrodynamic chromatography-mode FFF and
normal-mode FFF. The domain of normal-mode operation only
exists as a closed area on the � − r̃ mode-diagram below �c. Above
�c there is no distinction between hydrodynamic chromatography
and steric mode-FFF.

By integrating the fluid stress over the surface area of the
particles, we  further improve the predictions of ideal retention the-
ory for the case of small channel heights (microfluidic devices).
The steric function Ff in the retention ratio is altered but is no
more complicated than when this improvement was ignored. The
improved expression for the retention ratio predicts a new mode
of operation for particles whose diameters approach the channel
height. The elution order of this new Faxén-mode FFF is the same
as normal-mode FFF and exists for all �.  When the external force
on the particles scales as  ̨ = 3 (as is true for sedimentation FFF)
the normal- and Faxén-mode FFF regimes intersect and form a
continuous space.

Accurately predicting the transition points between the four
regions can be done through two quadratic equations for the
approximate rate of change of the retention ratio with respect to
particle size (Eq. (22) and Eq. (24)) in the limiting cases of strong
fields or small particle sizes.

FFF can act as a valuable characterization tool in microfluidic
devices but the elution time is not necessarily a one-to-one func-
tion of particle size. Although this complicates the interpretation
of retention profiles, four operational-modes exist, each of which
can be utilized to separate samples. By utilizing Fig. 11,  one may
choose to construct microfluidic channels designed to specifically
function in one operational-mode or another for given samples.
Doing so would avoid transitions and maintain the retention ratio
as a monotonic function of particle size. On the other hand, by using
the nonmonotonic form of the retention ratio (Eq. (20)), a microflu-
idic device need not be limited to a single operational-mode but can
be employed to measure all possible particle samples, from rela-
tively tiny tracer particles to particles as large as the microfluidic
channel itself.

Nomenclature

c solute concentration
c0 solute concentration at the accumulation wall, i.e. c0 =

c (y  = r)
f external force (perpendicular to flow)
F steric function in retention ratio
Fp F for point-particles
Ff F for finite sized particles
kBT thermal energy
r particle radius
rHN transition from hydrodynamic chromatography to

normal-mode
rNS transition from normal- to steric-mode, i.e. steric inver-

sion point
rSF transition from steric- to Faxén-mode
R retention ratio ( )

R1/2 R of largest particle, i.e. R1/2 = R r = w/2
t0 void time
tR retention time
v solvent velocity



T.N. Shendruk, G.W. Slater / J. Chrom

F
e
d

V
w
y
˛
	
�
�

〈
L

A

t
t

A

E
f
t

A

s
a

w

T
a
c

t

�

I
a

[

[

[

[

ig. 12. Approximations to r̃SF and r̃NS work well for small device retention param-
ters � as shown by the dotted lines from Eq. (22) for the example of  ̨ = 1. The
ashed line from Eq. (24) shows the small r̃ approximation for the r̃HN transition.

solute velocity
 channel height

distance from the accumulation wall
 power of force with base r

retention parameter
 device retention parameter, i.e. � = 	r̃˛

external field
·̃ scaling by channel height
· 〉 cross-sectional average
( · ) Langevin function
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ppendix A. Approximations

Although the unified ideal retention ratio is given analytically by
q. (20), the transitions r̃HN, r̃NS and r̃SF must be found numerically
rom ∂R/∂r̃ = 0. However, in some experimentally relevant limits,
he transitions can be well approximated by simple forms.

.1. Small � for r̃NS and r̃SF

Let us estimate the domain of the normal-mode by taking the
mall � limit of ∂R/∂r̃ such that the hyperbolic cotangent terms
pproach unity (coth (x) ≈ 1). This results in the approximation

∂R

∂r̃
≈ 6

[
a + b� + c�2

]
= 0 (22)

here

a ≡ 1 − 8
3

r̃, b ≡ 2˛r̃ − 2r̃ − ˛

r̃˛+1
, c ≡ 4˛

r̃2˛+1
.

his has simple, analytic roots. The two roots are plotted in Fig. 12
s dotted lines. Because it is the small � limit of ∂R/∂r̃, Eq. (22)
aptures the r̃NS and r̃SF borders quite well.

To first order, we see from Eq. (22) that the value for which the
ransition occurs is � ≈ a/b which scales as
∼r̃˛+1. (23)

t is seen in Fig. 12 that while this small � approximation does
 poor job estimating the total area of the normal-mode regime,

[
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the first root does accurately estimate r̃NS at small �. The sec-
ond root predicts r̃SF and agrees exceedingly well in the infinite
force limit of lim�→0 r̃SF = 3/8 = 0.375 but cannot approximate the
hydrodynamic chromatography limit of lim�→∞ r̃SF = 0.25.

A.2. Small r̃ for r̃HN

The opposite approximation corresponds to the small r̃ values
for which the expansion is coth (x)≈ x−1 + x/3 + x3/45 + . . ..  To order
2  ̨ + 1, the rate of change of the retention ratio with particle size is

∂R

∂r̃
= A + B

�2
= 0 (24)

where

A ≡ 2 − 8r̃,

B ≡ 1
5

[
−˛

6
r̃2˛−1 + 2 (2  ̨ + 1)

3
r̃2˛ − 4 (˛  + 1) r̃2˛+1

]
.

Again, the roots to the approximation are simple and have been
plotted in Fig. 12 as a dashed line. Despite being a small r̃ approxi-
mation, Eq. (24) fails as � approaches the critical value �c.

To order 2  ̨ + 1, the value for which the transition occurs is � ≈√
A/B which scales as

�∼r̃˛−1/2. (25)

Interestingly, this scaling means that the concavity of r̃HN changes
with ˛. When  ̨ = 1 the normal-mode regime is a “petal” as in Fig. 8
but when  ̨ > 1 the concavity flips and the normal-mode is more
“tear-drop” shaped.
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